Что такое рдп подводная лодка. Управление пл при движении в режиме рдп. Николай Александрович Гудим


Еще сто лет назад конструкторы и изобретатели подводных лодок понимали, что держать на корабле два двигателя – один для подводного, другой для надводного хода – нецелесообразно, и не оставляли попыток разработать единый двигатель, либо хотя бы оснастить бензомотор или дизель устройством для подачи воздуха, когда субмарина находится на перископной глубине.

Контр-адмирал кригсмарине Э.Гофт утверждал, что первый успех принесло изобретение так называемого шнорхеля, но те же немецкие подводники признают, что аналоги видели на голландских лодках и четко известно – впервые такую трубу установили в 1925 году на итальянской подлодке «Сирена».

Советский кораблестроитель Г.М.Трусов установил, что подобное «устройство впервые предложил в 1915 году командир подводной лодки «Акула» лейтенант Н.А.Гудим». Однако дальнейшие исследования показали, что авторами прототипа РДП вполне могут быть признаны С.Янович, Б.Е.Сальяр…

Инженер-контр-адмирал М.АРудницкий осматривал остатки РДП Сальяра на балтийских лодках «Леопард» и «Волк». Историк флота Н.А.Залесский видел снимок ПЛ «Кугуар» с РДП.

Все это однозначно свидетельствует – подобное устройство было изобретено и применялось в России рань- те, нежели в и н остр я иных флотах. Короче, помните анекдот про съезд патентоведов?

О едином двигателе если и забыли, то не навсегда. Историк советского подводного флота капитан 1-го ранга В.И.Дмитриев установил, что в 30-е годы инженер С.А.Базилевский создал «Редо» – регенеративный единый двигатель особого назначения, который в августе 1938 года установили на экспериментальной подводной лодке XII серии С-92. Это был дизель, работавший на газовой смеси; лодка успешно прошла испытания, несколько раз выходила в море.

Группа Базилевского приступила к проектированию единого двигателя в 1935 году, смонтировала его на С-92 через 3 года. А что в этом отношении тогда делалось в других странах?

В том же году Англия и Германия заключили соглашение, по которому «третьему рейху» разрешили строить субмарины, а уже в следующем году профессор Г.Вальтер представил проект парогазовой турбины для подводной лодки. Трудно поверить, что немцам удалось столь скоро справиться со столь сложным делом, видимо, они не один год готовились к отмене статей Версальского договора, запрещавшего Германии иметь подводный флот. В установке Вальтера окислителем служила 80-процен- тная перекись водорода, которая разлагалась в камере на водяной пар и кислород, последний сжигался с жидким топливом, в которое впрыскивалась питательная пресная вода. Образовавшаяся горячая парогазовая смесь под высоким давлением затем поступала в турбину, потом охлаждалась. Вода возвращалась на исходную позицию, ненужная углекислота удалялась за борт. Проект Вальтера сразу заинтересовал моряков. «Мы ухватились за него и добились того, что командование военно- морским флотом энергично поддержало это исключительно важное изобретение», – вспоминал гросс-адмирал К.Дениц. В 1937 году немцы приступили к созданию лодок Вальтера, но из-за технических трудностей до начала второй мировой войны не получили ни одной, сказалось и скептическое отношение руководства «кригсмарине» к подобным новинкам.


Схема устройства РДП: 1 – воздушная шахта, 2 – обтекатель, 3 -покрытие, предохраняющее от радиолокационного облучения, 4 – головка с клапаном, предотвращающим попадание в шахту забортной воды, 5 -антенна радиоприемника радиолокационного излучения, 6 – антенна системы «свой – чужой», 7 – поплавок, управляющий положением клапана 4, 8 -козырек шахты для выпуска отработавших газов 9, 10 – клапан, 11 -рычаг.


Схема парогазовой турбинной установки: 1 – насос для подачи перекиси водорода, 2 – камера разложения перекиси, 3 – камера горения, 4 -форсунка, 5 – главная турбина, 6 – конденсатор, 7 – конденсатный насос, 8 – холодильник для питательной воды, 9 – питательный насос, 10 -подача питательной воды в камеру горения, 11 – компрессор выхлопных газов, 12-редуктор, 13- электродвигатель экономичного хода, 14 – гребной винт.


Только в 1942 году заложили 4 опытовые субмарины XVIIBa серии (или Ва-201) водоизмещением 236/294 т, оснастив каждую парогазовой турбиной в 5 тыс. л.с., позволявшей развивать под водой до 26 узлов (у дизель- электрических – максимум 10 узлов). Правда,ненадолго.Запас окислителя занимал солидный объем 40 куб.м, дальность плавания не превышала 80 миль.

Построив три лодки, немцы в 1944 году начали готовить 12 тоже опытовых XVIIE серии большего (312 т) водоизмещения с 2,5-тысячесильными турбинами и скоростью 21,5 узла при дальности плавания под водой 1115 миль. Закончили тоже три, за ними последовала дюжина малых, уже боевых лодок ХУИГ серии, у которых запас перекиси водорода довели до 50 куб. м, однако этот заказ не выполнили.

Не довелось повоевать и средним субмаринам XVII- Фау серии водоизмещением 659 т. На них предполагалось разместить 98 куб. м окислителя, две турбины Вальтера общей мощностью 2,1 тыс. л.с., которые должны были обеспечить под водой 19-узловый ход при дальности плавания 205 миль.

Тогда же немцы наметили пополнить «кригсмарине» 200 средними подлодками XXVI серии водоизмещением по 842 т, с 7,5-тысячесильной турбиной. Если их предшественницы имели по два носовых торпедных аппарата, то у этих их было десять, причем их разместили в центре корпуса, чтобы выпускать торпеды назад – лодка атаковала противника на отходе, чтобы быстрее уйти от преследователей. Сотню недостроенных субмарин разобрали после войны, та же участь постигла заказанные в начале 1945 года две большие (1485 т) лодки XVIII серии с 5 торпедными аппаратами и 5 турбинами общей мощностью 5,5 тыс. л.с., для которых требовалось 204 куб. м окислителя.


Схема работы дизеля по замкнутому циклу «крайслауф»: 1 – дизель, 2 – подача воздуха, 3 – выхлоп газов в надводном положении, 4 – переключение выхлопа на замкнутый цикл, 5 – циркуляция выхлопных газов в подводном положении, 6 – холодильник, 7 – перепускной клапан для регулирования температуры газов, 8 – газовый фильтр, 9

– смеситель для обогащения выхлопных газов кислородом, 10 – баллоны с кислородом, 11 – кислородный редуктор, 12 – регулятор подачи кислорода, 13 – регулятор давления при работе двигателя по замкнутому циклу, 14

– компрессор выхлопных газов, 15 – выпуск избыточных газов, 16 – редуктор, 17 – разобщительная муфта, 18 – электродвигатель экономичного хода, 19 – гребной винт.


WHISKEY TWIN CYLINDER class с двумя ракетами П-5 на борту.



Транспортно-пусковой контейнер с крылатой ракетой П-5 береговой обороны на колесной базе.


После войны документы о двигателях Вальтера достались англичанам и американцам, последние в конце 40-х годов опробовали его на дизель- электрической «Корпорел» и сочли бесперспективным. Главным образом, из-за небольшой дальности плавания полным ходом под водой, изрядной пажароопасности, чувствительности к изменению глубины погружения и высокой стоимости эксплуатации.

Тем не менее в 1956 году англичане начали строить 2 опытные субмарины типа «Эксплорер» с двумя вальтеровскими установками по 4 тыс. л.с. Спустя 9 лет, завершив программу испытаний, их списали – преемников у них не было.

В 1960 году и шведы попробовали оснастить экспериментальными парогазовыми турбинами 2 из 6 новых дизель-электрических лодок типа «Дракон», чтобы добиться хотя бы ненадолго 25-узлового хода под водой. И согласилось с выводами американских экспертов.

В 1942 году, не ограничившись опытными вальтеровскими лодками, немцы взялись за эксперименты с другим видом единого двигателя – установкой «крайслауф» (бег по кругу). Суть ее состояла в том, что в подводном положении в цилиндры дизеля впрыскивался газообразный или жидкий кислород, хранящийся в баллонах (не правда ли, напоминает работы Никольского и Базилевского?). Выхлопные азы очищались, обогащались кислородом, и их вновь отправляли в цилиндры. Судя по расчетам, установка мощностью 1,5 тыс. л.с. могла обеспечить скорость до 16 узлов, однако слишком уж был велик расход компонентов горючей смеси. «Крайслауф» думали применить на малых и средних субмаринах, поскольку было ясно, что на большую дальность плавания рассчитывать не приходится. У немцев дальше экспериментов дело не пошло, как и у шведов, попробовавших внедрить «крайслауф» на лодках среднего тоннажа типа «Шьормен», строившихся с 1962 года.

В советском флоте работы с РДП продолжили в 1943 году, опробовав на плавучей зарядовой станции Б-2 (бывшая подводная лодка «Пантера» типа «Барс»). Когда она шла на перископной глубине под дизелями, воздух к ним подавался через вертикальную трубу. Позже подобным устройством оснастили боевую лодку ID,-310V бис-2 серии. Напомним: немцы начали применять аналогичные «шноркели» только со следующего года.

Что же касается единого двигателя, то работы над ним продолжались, и в феврале 1951 года на одном из ленинградских заводов заложили опытовую лодку С-99 проекта 617 с парогазовой турбиной. Окислителем служила перекись водорода, 100-тонный запас которой держали в синтетических забортных цистернах. Это весьма напоминает установку Вальтера, но, как утверждают капитаны 1- го ранга В.Баданин и Л. Худяков, советским специалистам трофейная документация и техника не достались. Вступив в строй в 1958 году, С-99 совершила несколько плаваний, запуск турбины производили на глубине 80 м, на 120 м лодка ходила довольно долго и не более 5 минут 50 м глубже (американцы были правы). В мае 1959 года из-за разложения перекиси водорода в трубопроводе произошел взрыв, никто не пострадал, С-99 вернулась на базу, но восстанавливать ее не стали.

В тот же период отрабатывали единый двигатель для малых субмарин 615-го проекта, не без оснований прозванных «зажигалками». После того, как одна из таких «малюток» затонула на Балтике после пожара, их постепенно вывели из боевого состава.

Наткнулся на интересную статью, посвященную любопытным случаям в истории подплава. Курьезы - как комические, так и трагические происходили в разные времена с подводниками разных стран.


НЕМЦЫ:

«Погружаться под верблюда!»

Случилось это в годы Первой мировой войны. Арабский шейх, союзник Германии в войне, в знак благодарности за то, что немцы на подводной лодке доставили ему деньги и оружие, решил сделать царский подарок кайзеру Вильгельму Второму. И выбрал самое ценное, что у него было - белого верблюда, передав его командиру субмарины. Отказаться принять сей дар командир не посмел - это означало бы нанести величайшее оскорбление дарителю. Чертыхаясь про себя, немецкие подводники привели животное на субмарину и привязали его к орудию на палубе.

В Средиземном море подлодка подверглась атакам английских самолетов. Спрятаться от них на глубине субмарина не могла - утонет двугорбый подарок шейха. Но морякам жить тоже хотелось. И тогда командир лодки принял соломоново решение, приказав боцману «Погружаться под верблюда!» Это значило, что боцман, стоявший на рулях, должен был притопить субмарину до головы верблюда, а когда самолеты улетали, всплывать в надводное положение, высвобождая из воды обезумевшее от страха животное. Так они и шли по морю, периодически то погружаясь «под верблюда», то всплывая...

Субмарину утопил...автомобиль

Опять же во время Первой мировой войны случился и этот курьезно-трагический случай. Немецкая подлодка «У-28» в надводном положении вышла в торпедную атаку на английский пароход «Олив Бланш», который перевозил боеприпасы и грузовые автомобили. Торпеда попала в цель. Раздался мощный взрыв. Однако подводники отпраздновать победу не успели: одна из автомашин, подброшенная в воздух взрывной волной, угодила прямо в субмарину. Подлодка тотчас затонула.

ЯНКИ

Понял командира буквально

11 июля 1910 г. американская подлодка «С-4», отрабатывая учебную задачу, пошла в атаку на стоявшую на рейде плавбазу «Кастайн». Замысел этой атаки заключался в том, чтобы субмарина прошла под днищем корабля. Командир лодки, ставя задачу, сказал об этом старшине-рулевому, стоявшему у перископа: «Мы должны «рассечь» плавбазу пополам». И рулевой точно исполнил приказ командира: вскоре раздался удар, и перископ подлодки, с треском раздирая обшивку, вонзился в днище плавбазы, сделав в нем большую пробоину. Старшина понял командира буквально. Что сказал ему после аварии командир в буквальном и переносном смысле - мы можем только догадываться...

Погибли от собственной торпеды

24 октября 1944 г. подлодка ВМС США «Тэнг», находясь в надводном положении, обнаружила и атаковала японский транспорт. Однако выпущенная лодкой торпеда хоть и попала в цель, но судно не потопила, и оно продолжало оставаться на плаву. «Тэнг» пустил вторую торпеду, которая вдруг уклонилась влево и стала совершать циркуляцию, т.е. возвращаться назад к субмарине. С мостика «Тэнга» это видели по следу из пузырьков воздуха от двигателя торпеды, но уклониться он нее не успели. Итог печален: субмарина была поражена собственной же торпедой и, взорвавшись, затонула. А те из подводников, которым удалось уцелеть, попали в плен к японцам.

Вышеописанный случай не единичен. 21 мая 1968 г. при возвращении с боевого дежурства в Атлантике бесследно пропала атомная субмарина ВМС США «Скорпион» (99 членов экипажа). Ее поиски оказались безрезультатны. И лишь несколько лет назад стало известно, что «Скорпион» стал жертвой собственной торпеды. По так и не установленной причине на одной из торпед с неядерной боеголовкой внезапно сработал механизм приведения торпеды в боевое положение, что грозило взрывом подлодки. Командир, дабы предотвратить катастрофу, решил срочно избавиться от взбунтовавшейся торпеды и приказал произвести ее пуск. Однако выпущенная на волю в Атлантику, торпеда начала рыскать в поисках цели, пока в прицеле ее самонаводящейся боеголовки не оказался сам «Скорпион»...

У американцев, кстати, был и такой курьезно-печальный случай, когда на их атомную подводную лодку «Патрик Генри» рухнула запущенная с нее же...баллистическая ракета.

РУССКИЕ
Собиратель приколов о советском подплаве отставной офицер-подводник А.Покровский свидетельствовал о следующем случае, приключившемся в одном из походов. Командиру нашей атомной субмарины было приказано сфотографировать в Средиземном море фрегат ВМС США, для чего выдали фотоаппарат с огромным объективом. И вот, всплыв как-то в надводное положение, подводники обнаружили американский корабль, который, в свою очередь, увидев всплывшую подлодку, на всех парах устремился к ней. Такой благоприятный момент упускать было нельзя, и командир, для лучшего обзора, решил лично взгромоздиться на РДП. РДП - это такая огромная выдвижная труба на рубке лодки для забора воздуха, верхнюю часть которой венчает поплавок-крышка.

Усевшись на этот поплавок с фотоаппаратом на голом торсе (жарко очень было), командир велел поднимать РДП. Воспарив над морем, как орел, он несколько раз щелкнул фрегат супостата и дал команду спускать его вниз. Но тут, как это нередко бывает у нас на флоте, случилась накладка: РДП заело, и труба, проклятая, никак не хотела опускаться. Американцы, в свою очередь, отсняв странных русских, давно ушли восвояси, а командир подлодки все еще торчал над водой на поплавке РДП и крыл что есть мочи матом на все Средиземноморье своих разгильдяев-подчиненных со старпомом во главе...

А на следующий день итальянские газеты опубликовали крупным планом снимок: всплывшая советская подлодка с поднятым РДП, на которой сидит ее полуголый командир с фотоаппаратом, снабженным объективом необычной величины. Рядом - еще одна фотография, где крупно была подана его вопящая что-то физиономия. Подпись к снимкам была лаконична: «Ох уж эти непонятные русские».

Что касается наших снимков американского фрегата, то с ними опять-таки вышла незадача: в спешке фотоаппарат забыли зарядить фотопленкой...

Случается, всплывают и катера

В середине 50-х гг. во время учений ТОФа в заливе Петра Великого произошел следующий случай. Экипаж торпедного катера (деревянный, американской постройки) почувствовал, что их корабль вдруг стал отрываться от воды и подниматься в воздух. Нет, это была не мощная рука дядьки Черномора. Это неосмотрительно всплывала подводная лодка типа «Ленинец», поднимая на себе катерников. Катер тут же стал разваливаться на части, Но его перепуганный экипаж удачно «десантировался» на палубу субмарины.

Похожий случай имел место и в начале 80-х на Камчатке. При всплытии атомная подлодка ТОФ попыталась нечаянно поднять на себе сторожевой корабль, однако он в конце концов соскользнул с палубы атомохода в родную морскую стихию.

К-429
Были на советском флоте "несчастливые" лодки, та же К-19, например, но во первых она была первой в серии, а во вторых, аварии на ней происходили в основном из-за отказов обрудования. А вот К-429 в этом отношении не повезло, абсолютно исправную лодку утопил собственный экипаж. В 1983 году ее утопили вследствии погружения с открытой системой вентиляции, через которую вода стала поступать в отсеки. А когда поступил приказ продуть балласт, чтобы экстренно всплыть, оператор вместо того, чтобы закрыть клапаны вентиляции, закрыл кингстоны и в результате этого воздух, которым должны были вытеснить балластную воду, стравили напрасно.
Тогда, в результате аварии на ПЛ, погибло 16 человек.
На совещании руководящего состава Северного флота в 1983 году адмирал В.Н.Чернавин, назначенный начальником Главного штаба ВМФ, так охарактеризовал обстоятельства гибели «К-429»: «Лодка упорно сопротивлялась неправильным действиям экипажа и не хотела тонуть, но он её всё таки потопил».
Но это еще не все. Через несколько месяцев лодку подняли и отбуксировали в судоремонтный завод для ремонта. В процессе ремонта там ее нечаянно утопили снова, прямо у стенки завода. Потом снова подняли, переоборудовали в учебно-тренировочную станцию и поставили на прикол, видимо от греха подальше...

ЕДИНЫЙ ДВИГАТЕЛЬ ДЛЯ ПОДВОДНОЙ ЛОДКИ

Александр Маринин

Классическая дизель-электрическая главная энергетическая установка подводной лодки (ДЭГЭУ) - фактически мера вынужденная, да такие подлодки на самом деле и не подводные вовсе, а скорее ныряющие. Все они, как киты или дельфины, вынуждены с определенной периодичностью подниматься на поверхность, чтобы запастись кислородом и заодно зарядить аккумуляторы. Идеальным для подводной лодки является единый двигатель для надводного и подводного хода. Ведь у лодки с ДЭГЭУ в подводном положении дизель фактически становится балластом (если только лодка не использует так называемый режим работы дизеля под водой (РДП), когда, двигаясь на перископной глубине, она забирает атмосферный воздух с помощью специальной трубы с клапаном от заливания - немцы назвали это устройство шнорхелем). В надводном положении обычной лодке (если на ней не реализован режим электродвижения) становятся "ненужными" электромоторы и уж, во всяком случае, аккумуляторные батареи. Таким образом, как большинство двухсредных или двухрежимных аппаратов, подводная лодка постоянно "возит" в себе довольно массивное, объемное и дорогостоящее оборудование, которое используется только часть времени.

В поисках единого двигателя были опробованы самые разнообразные устройства. Первым из них был… человек, который потреблял сравнительно мало воздуха, но в качестве двигателя оказался слишком маломощен. Идея чисто электрической подводной лодки также зашла в тупик, поскольку даже с использованием самых совершенных аккумуляторов лодка способна проплыть не более нескольких сот миль. Постепенно конструкторы подлодок пришли к выводу, что единый двигатель следует создавать на базе мотора не подводного хода, а наоборот - надводного. Для двигателей внутреннего сгорания наметились два пути: один впоследствии привел к РДП, а другой был связан с разработкой автономной силовой установки, не нуждающейся в атмосферном воздухе.

Первыми, кто попытался заставить двигатель внутреннего сгорания работать под водой, стали французские инженеры Бертен и Петитхомм. Результаты испытаний разочаровали.

Гораздо более удачную попытку создать подводную лодку с единым двигателем предпринял наш соотечественник инженер С.К. Джевецкий. По его замыслу в качестве единого предполагались два четырехтактных бензиновых двигателя фирмы "Панар-Левассор" мощностью по 130 л.с. каждый, работающих с помощью зубчатых передач на один гребной вал с четырехлопастным винтом. В надводном положении бензиномоторы работали по обычной схеме. В подводном положении для обеспечения их работы в машинное отделение подавался воздух, хранившийся в 45 воздухохранителях при давлении 200 атмосфер. Общий запас составлял около 11 м3, чего должно было хватить на 4 часа работы бензиномоторов. Давление воздуха с 200 атмосфер до 18 снижалось в редукционном клапане (детандере). Выхлопные газы откачивались через надстройку, служившую своеобразным глушителем, в отводную трубу, расположенную под килем и имевшую большое количество мелких отверстий. Выходя мелкими струйками из многочисленных отверстий отводной трубы, выхлопные газы должны были растворяться в воде.

Строительство подводной лодки, получившей наименование "Почтовый", началось в 1906 г. 30 сентября 1908 г. она вошла в состав флота. Несмотря на то, что эксплуатация "Почтового" подтвердила возможность подводного плавания с двигателями внутреннего сгорания, работающими в подводном положении, подводная лодка этого типа так и осталась единственной. Не удалось достичь бесследности движения лодки под водой - на поверхности были заметны пузырьки отработанных газов. Мощность газового насоса оказалась недостаточной для откачки выхлопных газов от обоих бензиномоторов, поэтому в подводном положении работал только один. Сложность и низкая конструктивная надежность механизмов требовали исключительно высокой квалификации личного состава, обслуживавшего лодку. Большие нарекания вызывала большая шумность бензиномоторов; кроме того, на зарядку воздухохранителей уходило от 2 до 3 дней.

Первая мировая война прервала работы по созданию единых двигателей для подводных лодок, но уже с 1920-х годов в Советском Союзе и Германии вновь начались исследования в этой области. При этом от идеи просто разместить на подводной лодке большой запас воздуха сразу отказались. Решили хранить только кислород, причем в жидком состоянии, когда он занимает примерно в пять раз меньший объем, чем в баллонах под давлением 150 кгс/см2. Да и сосуд для хранения жидкого кислорода намного легче, чем стальные толстостенные баллоны равной емкости. Однако жидкий кислород непрерывно испаряется, а способы, замедляющие этот процесс, в тот период времени не были разработаны.

В отечественном флоте в 1930-е годы изучались две схемы обеспечения работы дизелей под водой или, как их стали называть, схемы работы дизеля по замкнутому циклу: "РЕДО" С.А. Базилевского и "ЕД-ХПИ" В.С. Дмитриевского.

Первой в 1937 г. начали переоборудование подводной лодки XII серии под опытную энергетическую установку "РЕДО" (регенеративный единый двигатель особого назначения). Эта подлодка получила наименование С-92 и бортовой номер Р-1. Принцип работы установки "РЕДО" состоял в следующем: в подводном положении выхлопные газы дизеля очищались от механических примесей и влаги, охлаждались и направлялись обратно на всасывающий коллектор дизеля. Затем к ним добавлялся газообразный кислород. Избыток выхлопных газов отсасывался компрессором и сжимался, при этом углекислый газ, составлявший около 75 % объема избыточных газов, превращался в жидкую углекислоту, которая сливалась в специальные баллоны и периодически удалялась за борт. Газообразный остаток, в основном кислород, снова возвращался в цикл. Осенью 1938 г. подлодка С-92 вышла на испытания, которые продолжались более двух лет. К началу Великой Отечественной войны они еще не закончились, и подводную лодку законсервировали. В связи с тем, что к окончанию войны и в первые послевоенные годы были разработаны и проверены в действии более простые циклы единых двигателей, к испытаниям "РЕДО" не возвращались. После войны подводная лодка использовалась для отработки других типов единых двигателей.

В 1938-1939 гг. ОКБ НКВД разработало проект подводной лодки с опытной единой энергетической установкой "ЕД-ХПИ" (единый двигатель с химическим поглотителем). Принцип работы установки заключался в следующем. Выхлопные газы из дизеля поступали в газоохладитель, где они охлаждались и освобождались от водяных паров и частично от механических примесей. Далее они направлялись в специальные химические фильтры, где отделялся углекислый газ и окись углерода. Затем производилось дальнейшее освобождение выхлопных газов от избыточной влаги, они обогащались газифицированным кислородом, и в дизельный отсек поступала газовая смесь, близкая по своему составу к обычному воздуху.

Подводную лодку проекта 95 с "ЕД-ХПИ" спустили на воду в Ленинграде 1 июня 1941 г. С началом войны ее отбуксировали в Горький, а затем в Баку. Ходовые испытания закончили после войны, а в состав ВМФ корабль приняли только в 1946 г. Однако все мытарства окупились сторицей. В первой половине 1950-х гг. в состав отечественного флота вошло 30 подводных лодок проекта А615 с единым двигателем, созданным с учетом опыта эксплуатации лодки проекта 95. Советский Союз стал единственной военно-морской державой, серийно строившей корабли с подобной силовой установкой.

Второй страной, где велись интенсивные работы по созданию подводных лодок с единым двигателем внутреннего сгорания, являлась Германия. У немцев такой двигатель назывался "крейслауф" - круговорот. Создать работоспособный дизель, работающий по замкнутому циклу, немцы смогли в годы Второй мировой войны. В 1943 г. командование германских ВМС приняло решение построить экспериментальную подлодку XVII серии с дизелем "крейслауф" мощностью 1500 л. с. В 1944 г. ее заложили под обозначением U-798, но до окончания войны не успели спустить на воду.

В 1930-х годах предпринималась еще одна попытка создать двигатель, работающий по замкнутому циклу, но с применением в качестве окислителя не кислорода, а перекиси водорода. Автором идеи был германский инженер Гельмут Вальтер.
Вальтер пришел к выводу, что наиболее эффективно свойства концентрированной перекиси водорода можно использовать не в дизельной, а в турбинной установке. В 1936 г. такую экспериментальную парогазовую турбинную энергетическую установку построили в Киле. Она работала по так называемому "холодному" циклу. Продукты реакции разложения высококонцентрированного раствора перекиси водорода подавались в турбину, вращавшую через понижающий редуктор гребной винт, а затем отводились за борт.

Первая энергетическая установка имела два очевидных недостатка. Кислород, содержащийся в отводимых за борт продуктах реакции, плохо растворяется в воде, а его пузырьки демаскируют подводную лодку. Кроме того, в условиях корабля, изолированного от атмосферы толщей воды, выбрасывать за борт кислород было неоправданным расточительством. Поэтому логическим продолжением "холодного" процесса являлся "горячий", при котором в продукты разложения перекиси подавалось органическое топливо, которое затем сжигалось. В таком варианте мощность установки резко возрастала и, кроме того, уменьшалась следность, так как продукт горения - углекислый газ - значительно лучше кислорода растворяется в воде. И все же на первом этапе работ Вальтер ограничился установкой с "холодным" циклом, поскольку она была проще и безопаснее.
В 1937 г. Вальтер доложил результаты своих опытов руководству германских ВМС и заверил всех в возможности создания подводных лодок с парогазовыми турбинными установками с невиданной скоростью подводного хода - более 20 узлов.

Командование кригсмарине приняло решение о форсировании создания лодки. В процессе ее проектирования решались вопросы, связанные не только с применением необычной энергетической установки. Для получения проектной скорости подводного хода порядка 25 узлов обводы корпуса обычной подводной лодки и способы управления ею в подводном положении стали неприемлемы. Пришлось прибегнуть к опыту авиастроителей. Выбирая оптимальную форму и размеры корпуса лодки, испытали несколько моделей в аэродинамической трубе. В 1938 г. в Киле заложили первую в мире опытную подводную лодку с энергетической установкой на перекиси водорода водоизмещением 80 т, получившую обозначение V-80. Проведенные в 1940 г. испытания буквально ошеломили - подлодка развила под водой скорость 28,1 узла.

Несмотря на великолепные результаты испытаний, дальнейшие работы застопорились - шла Вторая мировая война, и германское командование сделало ставку на уже отработанные образцы вооружения. Только в 1941 г. началась разработка, а затем постройка подводной лодки V-300 с парогазовой турбиной, работавшей по так называемому "горячему" циклу.

U-791 так и не достроили, зато заложили четыре опытно-боевые подводные лодки двух серий - Wa-201 (Wa - Вальтер) и Wk-202 (Wk - Вальтер-Крупп). По своим энергетическим установкам они были идентичны, но отличались конструкцией корпуса. С 1943 г. начались их испытания. В частности, лодка U-792 (серия Wa-201), имея запас перекиси водорода 40 т, почти четыре с половиной часа шла под форсажной турбиной и четыре часа поддерживала подводную скорость 19,5 узла. Не дожидаясь окончания испытаний опытных подлодок, в январе 1943 г. германской промышленности был выдан заказ на постройку еще 12 кораблей с аналогичными энергетическими установками. До окончания войны немцы успели спустить на воду только пять единиц, три из которых прошли испытания. Ни одна из лодок с двигателями Вальтера в боевых действиях не участвовала. Перед капитуляцией все они были затоплены экипажами. Но, воспользовавшись тем, что это произошло на мелководье, две лодки подняли. Затем U-1406 отправилась в США, a U-1407 - в Великобританию. Там специалисты тщательно изучили немецкие новинки, а британцы даже провели натурные испытания U-1407. В 1956 г. англичане ввели в строй свои опытовые подлодки "Эксплорер" и "Экскалибур" с двигателями Вальтера. Однако время ушло: американцы уже вовсю внедряли ядерные энергетические установки, по этому же пути решили идти и британцы.

После окончания Второй мировой войны до начала 1950-х годов все ведущие военно-морские державы занимались изучением германского наследия. Именно поэтому все первые послевоенные проекты подводных лодок в какой-то мере являлись национальными аналогами последних германских разработок. Советский Союз строил подлодки с единым двигателем, но на базе собственных предвоенных разработок. В 1960-е годы об идее неядерного единого двигателя для подлодок опять вспомнили. Речь идет о превращении химической энергии непосредственно в электрическую без процесса горения или механического движения, то есть выработке электроэнергии бесшумным способом.

Электрохимический генератор создан на базе топливных элементов. По сути, это аккумуляторная батарея с постоянной подзарядкой. Принцип работы энергетической установки с электрохимическим генератором был тем же, что и 150 лет назад, когда англичанин Уильям Роберт Гров случайно обнаружил при электролизе, что две платиновые полоски, обдуваемые - одна кислородом, а другая - водородом, помещенные в водный раствор серной кислоты, дают ток. В результате реакции, кроме электрического тока, образовывались тепло и вода. При этом энергетическое превращение происходит бесшумно, а единственным побочным продуктом реакции является дистиллированная вода, которой достаточно легко найти применение на подводной лодке. Идея применения электрохимических генераторов для подводного хода сулила немалые преимущества, в первую очередь, давала существенное увеличение непрерывной дальности подводного плавания экономическим ходом по сравнению с дизель-электрическими подводными лодками. В известной степени интерес к электрохимическим генераторам "подогревался" тем обстоятельствам, что в США в 1960-е годы бортовые системы пилотируемых космических кораблей "Джемини" (орбитальные полеты) и "Аполлон" (высадка на Луну) получали питание от топливных элементов.

В Советском Союзе в 1989 г. закончились межведомственные испытания подводной лодки проекта 613Э с опытной энергетической установкой с электрохимическим генератором (разработчики - НПО "Квант" минэлектротехпрома и НПО "Криогенмаш" минхиммаша). Переоборудование вместе с ремонтом корабля продолжалось более 10 лет.

Сама установка электрохимического генератора мощностью 280 кВт кроме топливных элементов включала в себя системы управления, обеспечения рабочими компонентами и др.

Новые условия эксплуатации лодки потребовали дооборудовать место ее базирования.

В течение шести месяцев специальная комиссия провела расширенные межведомственные испытания энергетической установки с электрохимическим генератором (ЭХГ). Впервые в практике отечественного кораблестроения был испытан в корабельных условиях и показал соответствующие проекту характеристики генератор "ЭХГ-280". Был сделан вывод о том, что ЭХГ как неатомный экологически чистый малошумный источник электроэнергии с прямым преобразованием химической энергии в электрическую является перспективным для применения в подводном судостроении. Он обладает рядом преимуществ перед традиционными источниками электроэнергии, в частности, позволяет в 5...10 раз увеличить дальность непрерывного подводного плавания экономическим ходом.

В то же время, несмотря на очевидные преимущества установки на топливных элементах, она не обеспечивает требуемые оперативно-тактические характеристики подводной лодки океанского класса, прежде всего в части, касающейся выполнения скоростных маневров при преследовании цели или уклонении от атаки противника. Поэтому германские подводные лодки проекта 212 оснащаются комбинированной двигательной установкой, в которой для движения на высоких скоростях под водой используются аккумуляторные батареи или топливные элементы, а для плавания в надводном положении - традиционный дизель-генератор, в состав которого входит 16-цилиндровый V-образный дизель и синхронный генератор переменного тока.

На разработке двигателей Стирлинга, или двигателей с внешним подводом теплоты, сосредоточили свои усилия шведские специалисты (об истории двигателя Стирлинга см. "Двигатель" № 2 и 3 - 2005). Конструкция предусматривает наличие единой камеры сгорания для всех цилиндров, использование поршней двойного действия, выполняющих функции рабочего поршня и вытеснителя. На шведских подлодках типа "Готланд" два двигателя Стирлинга мощностью чуть более 100 л. с. обеспечили увеличение продолжительности пребывания под водой в 7 раз (до 14 суток).

  • VI: Организация и управление торгово-посреднической деятельностью на рынке товаров
  • Анализ персонала организации (для профиля «Управление человеческими ресурсами»)
  • Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.
  • В тот момент, когда управление передается на Except, в программе считается, что ошибка обработана.
  • Виды государственного долга: внутренний и внешний. Управление государственным долгом.
  • Устройство РДП постоянно подвергается действию атмосферных осадков и морской воды, поэтому, принимая во внимание особую важность устройства и недоступность к нему изнутри подводной лодки, необходимо тщательно следить за исправностью его состояния и правильной эксплуатацией во избежание отказа в действии. Плавание подводной лодки в режиме РДП является сложным маневром. Оно выполняется в строгом соответствии с инструкцией по эксплуатации системы и требует от личного состава четких и слаженных действий и повышенного внимания, особенно к плавучести подводной лодки. Несоблюдение инструкции, ослабление внимания при плавании в режиме РДП могут привести к приему воды внутрь подводной лодки в больших количествах за короткое время, а следовательно,и к потере ее плавучести. Так, например, при несрабатывании поплавкового клапана в дизельный отсек через воздухопровод РДП будет поступать 1–2 т воды в секунду.

    Устройство РДП, установленное на подводных лодках, позволяет:

    – плавать под двигателями надводного хода на перископной глубине;

    – увеличить время непрерывного пребывания подводной лодки под водой;

    – заряжать аккумуляторную батарею и пополнять запасы сжатого воздуха на перископной глубине;

    – вентилировать отсеки и аккумуляторную батарею на перископной глубине.

    Плавание под РДП разрешается на скоростях хода при состоянии моря, строго указанных в спецификации для каждого проекта подводных лодок соответственно.

    Постановка подводной лодки для движения под РДП осуществляется на перескопной глубине на ходу под электродвигателем, по боевой тревоге и команде "По местам стоять, под РДП становиться". После занятия личным составом своих мест в соответствии с расписанием, движение подводной лодки осуществляется под глав­ным гребным электродвигателем. Поддифферентовав подводную лодку и выбрав необходимый курс для движения, командир подводной лодки дает приказание о приготовлении дизелей к работе под РДП. После этого по команде командира БЧ-V поднимается и устанавливается на стопор воздушная шахта, закрывается кингстон шахты РДП и спускается вода из воздушной шахты в уравнительную ци­стерну. Одновременно готовятся вдувная и вытяжная венти­ляционные магистрали для работы в режиме РДП и прове­ряется отсутствие воды в воздушном и газовом трубопрово­дах. Убедившись в отсутствии воды в воздушной шахте РДП, открывают верхнюю воздушную захлопку РДП и клапан ПВД. Невозврат­но - управляемая газовая захлопка газоотвода ставится в положение «невозврат», и по готовности дизеля по­следний пускается по приказанию из центрального поста.

    При достижении противодавления на выхлопе 1,1- 1,2 кг/см 2 открывается наружная газовая захлопка, после чего устанавливается необходимое число оборотов дизелей. После постановки под РДП подводная лодка снова поддифферентовывается. Для улучшения удержания глубины подводную лодку рекомендуется дифферентовать таким образом, чтобы она удерживала заданную глубину при дифференте около 0,5-1° на нос.

    Воздух, поступающий из атмосферы через воздушную шахту и воздухопровод, подается в дизельный отсек для ра­боты двигателя и в систему вдувной вентиляции для вентили­рования отсеков и аккумуляторной батареи подводной лодки. Отсечный воздух по системе вытяжной вентиляции поступает в дизельный отсек.

    При необходимости осуществлять движениев режимеРДП под двумя дизелями сначала готовится и произво­дится пуск одного дизеля, а затем после достижения не­обходимого числа оборотов и поддифферентовки подводной лодки готовится к пуску и пускается второй дизель.

    В корме по правому борту находится гидравлическая машинка захлопки шахты РДП. Через нее воздух подается к дизельным двигателям, когда лодка находится в подводном положении. РДП позволяет заряжать батарею и двигаться на дизельных двигателях, не вплывая в надводное положение.

    Впервые устройство для работы двигателей под водой было установлено на российской подводной лодке "Скат" в 1910 году. Массово устройство РДП или, точнее, шноркель стали применять немцы в 1943 году в связи с высокими потерями от противолодочных сил союзников.

    Плавание под РДП - один из самых опасных режимов движения лодки. Конструктивно устройство РДП включает поплавок, который закрывает шахту при захлестывании ее водой. В этот момент двигатель высасывает воздух и резкий перепад давления "бьет" по барабанным перепонкам.

    В 1961 году дизельная подводная лодка С-80 шла под РДП в штормовую погоду. Около часа ночи боцман не удержал перископную глубину и объявили "Срочное погружение!" Но поплавок замерз и вода пошла в шахту. Поступление воды в дизельном отсеке заметили через 10 секунд. Вахтенный трюмный в ЦП был приписан с другой лодки. В стрессовой ситуации он вместо рычага привода захлопки повернул на закрытие рычаг астронавигационного комплекса "Лира". Мотористы попытались закрыть нижнюю захлопку шахты, имеющую только ручной привод. Для этого под напором воды нужно сделать 11 оборотов, они успели сделать 8. Преодолевая сопротивление воды, они давили на рычаг с такой силой, что согнули шток.

    На 30 секунде лодка потеряла ход и стала проваливаться с дифферентом на корму. На 40 продули главный балласт, но воздуха высокого давления не хватило для компенсации отрицательной плавучести. Лодка, зависнув, устремилась на дно. На 60 секунде она воткнулась кормой в грунт на глубине 200 м.

    Переборочный люк в 4 отсек был открыт и вода стремительно затопила его. Через 2 минуты носовая переборка отсека не выдержала давления и превратилась в лохмотья. Вода пронеслась по 3 отсеку и,сорвав нижний рубочный люк, проломила переборку во 2 отсек.

    Оставшиеся в живых отдали аварийные буи. Но длина их тросов была всего 125 м и до поверхности буи не дошли. 14 человек собрались в кормовом отсеке. Они открыли нижнюю крышку люка и опустили тубус. Но у них было только 10 аппаратов. Через 6 часов живых в отсеке не осталось

    В 1 отсеке было 10 человек. Они хотели выйти. Чтоб поднять нос хотя бы до глубины 120 м, подводники продули носовые цистерны. Они старались держаться. Моряки стравили в отсек весь воздух из парогазовых торпед. Но через микроскопические неуплотнения отравленный воздух из 2 отсека просачивался к ним. Когда их осталось 5, четверо включились в ИДА, а один одел бесполезный в этом случае обычный фильтрующий противогаз.

    Лодку нашли только через 7 лет. В ней погибло 68 человек. 1 отсек держался неделю.